Twitter Facebook Instagram YouTube
BUSCAR
27 de Julio de 2021
CONICET: logran regenerar el nervio ciático tras una lesión
Científicas de dos institutos del CONICET, de La Plata y la UBA, presentaron el avance, con prueba en animales, sobre una terapia de potencial aplicación en medicina regenerativa.
Compartir Facebook Twitter
En esta nota: CONICET, IFLP, IQUIFIB, Nervio ciático, Medicina regenerativa

Científicas del Instituto de Física de La Plata y del Instituto de Química y Fisicoquímica Biológica, anunciaron el avance de la terapia, en animales.

Dos equipos de investigadoras del CONICET pertenecientes al Instituto de Física La Plata (IFLP, CONICET-UNLP) y al Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB, CONICET-UBA) acaban de dar un paso trascendental en el desarrollo de una terapia de potencial aplicación en medicina regenerativa, al probarla con éxito sobre una lesión en el nervio ciático de ratas.  

Marcela B. Fernández van Raap, es referente en nanomagnetismo del CONICET en el IFLP, y una de las autoras de la investigación. Paula Soto, realizó su doctorado en el IQUIFIB como becaria del CONICET y fue la primera autora del trabajo. Y Patricia Setton-Avruj, es investigadora del CONICET y directora del Laboratorio de Células Multipotentes en Neuroregeneración del IQUIFIB, y también autora del trabajo. 

La estrategia de la terapia consiste en la implantación de células madre adultas, previamente obtenidas a partir del tejido adiposo, es decir grasa corporal, cargadas con nanopartículas magnéticas, y luego direccionadas de manera externa mediante el uso de un imán hacia el lugar del daño. El estudio, publicado recientemente en Acta Biomateralia y seleccionado entre miles por la prestigiosa revista Science para comentarlo en su último número, permitió comprobar que la técnica contribuye a la recuperación de la morfología del nervio y su funcionalidad. 

Las investigaciones para dar con terapias que permitan la regeneración nerviosa, basadas en el uso de células madre adultas chocan con un obstáculo importante: no logran asegurar la permanencia de un número suficiente de células en el sitio lesionado durante el tiempo necesario para producir los efectos terapéuticos.  

En el trabajo de reciente publicación, las expertas combinaron sus experiencias previas en, por un lado, el trasplante de células madre adultas para la regeneración de nervios periféricos y, por otro, el uso de materiales magnéticos en aplicaciones biomédicas "con el objetivo único de mejorar el arribo y la retención de las células madre que tienen las propiedades regenerativas de interés para la terapia en el sitio donde está la injuria", según comenta Fernández van Raap. 

El primer paso de la terapia, testeada in vivo en ratas adultas de laboratorio, consistió en la obtención de un tipo de células adultas y multipotentes que tienen la capacidad de diferenciarse en diversos tipos celulares que regulan la respuesta inmune, mecanismos de acción propuestos para ejercer su efecto regenerativo. La extracción se realizó a partir del tejido adiposo de los mismos animales que tenían la lesión, en un procedimiento parecido al de una liposucción. 

Una vez obtenidas, las células en cultivo fueron incubadas con nanopartículas magnéticas de magnetita, u óxido de hierro, un material biocompatible y de baja toxicidad.  

"Cuando entran en contacto, las células endocitan a las nanopartículas, es decir deforman su membrana celular, las envuelven e incorporan. Se las ?comen?. Por eso decimos que las células se vuelven magnéticas, porque ahora tienen adentro las nanopartículas", explica Soto.  

"De esta forma, se obtiene un material híbrido que tiene distintas propiedades: por un lado, las de las células con sus factores de crecimiento y efectos inmunomoduladores y, por otro, el magnetismo de las nanopartículas, lo que hace que pueda ser accionado de forma externa con un campo magnético", añade Fernández van Raap. 

Según explica Setton-Avruj, "en anteriores experiencias de trasplantes de células multipotentes por vía endovenosa hemos demostrado que estas son reclutadas o convocadas hacia el lugar de la lesión por señales biológicas generadas como consecuencia de la reacción inflamatoria provocada allí. El nervio lesionado secreta esas señales que atraen a las células trasplantadas. El hecho de que hayamos logrado magnetizar las células permite vehiculizarlas y manejarlas desde el exterior con el imán, lo que ayuda a hacer más eficiente su llegada y a que queden retenidas en la zona por mayor tiempo y puedan tener un efecto benéfico más significativo", destaca. 

Una vez caracterizadas las células cargadas con las nanopartículas, y establecidas las cantidades incorporadas por las células, fueron trasplantadas en el torrente sanguíneo mediante una inyección endovenosa, y se colocó el imán en la parte externa de la pata del animal, en la zona de la lesión, con un apósito durante 24 horas para atraerlas y retenerlas en ese lugar. "Se trata de un procedimiento no invasivo, no requiere cirugía ni inmovilización, y no provoca dolor ni sufrimiento", subrayan las expertas. 

Uno de los resultados alentadores de esta estrategia innovadora fue que al cabo de una semana y mediante estudios de microscopía electrónica y electrofisiología pudo verse la recuperación de la estructura y funcionalidad del nervio, respectivamente. "No siempre la regeneración implica recuperación funcional. En este caso sí, se obtienen respuestas a los estímulos. Pudimos corroborar que recobra parte de su funcionalidad", destaca Soto. "Lo que se logra es un proceso de remielinización, es decir se recupera la mielina, membrana especializada que facilita la velocidad de conducción del impulso nervioso. Cuando hay una lesión, el nervio se desmieliniza". 

Las expertas se entusiasman con la idea de que esta técnica pueda ser potencialmente trasladada a una población adulta, y subrayan que es aplicable a cualquier nervio periférico. "En el sistema nervioso central sería más difícil. Las células trasplantadas podrían llegar y ejercer su efecto, pero sería más complejo lograr su direccionamiento a través de un imán externo. La localización del nervio ciático lo hace más accesible a las fuerzas magnéticas externas", concluye Setton-Avruj. 

Compartir Facebook Twitter
En esta nota: CONICET, IFLP, IQUIFIB, Nervio ciático, Medicina regenerativa
CONICET IFLP IQUIFIB Nervio ciático Medicina regenerativa
Te puede interesar
CONICET: Estudian tecnologías basadas en...
Presupuestos 2022: ¿Qué áreas de ciencia...
Legislativas: Manes, Ajmechet, Tavella y...
CONICET: Descubren un mecanismo clave de...
¿Quiénes se postulan para integrar el Di...
Twitter
Facebook
Suscribite
Te puede interesar
CONICET: Estudian tecnologías basadas en...
Presupuestos 2022: ¿Qué áreas de ciencia...
Legislativas: Manes, Ajmechet, Tavella y...
CONICET: Descubren un mecanismo clave de...
¿Quiénes se postulan para integrar el Di...
SEGUINOS
Twitter Facebook Instagram YouTube
Periferia 2019 © - Todos los Derechos Reservados
by Proweb Solutions
Twitter Facebook Instagram YouTube
Periferia 2019 © - Todos los Derechos Reservados